www.davvonline.com

www.davvonline.com

www.davvOnline.com

June - July 2009

Bachelor of Computer Application (BCA) Examination II Semester

Mathematics - II

Time: 3 Hours]

[Max. Marks : 40

Note: All questions are compulsory and carry equal marks. Solve any two parts from each questions.

1. (a) Trace the curve

$$y^2 (a + x) = x^2 (a - x)$$

- Discuss the convergence of Beta function. (b)
- (c) Trace the curve

$$r = a (1 + \cos \theta)$$

- 2. (a) State and prove Duplication formula.
 - Find the length of the parabola y2 = 4ax from the vertex to an (b) extremity of the latus rectum.
 - (c) Prove that

B (m, n) =
$$2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$

- Evaluate $\int_{\Omega} XY \, dx \, dy$ over the region in the positive quadrant 3. for which $x + \le 1$.
 - State Divergence theorem and apply it to show that (b)

$$\iint_{S} \Delta (x^{2} + y^{2} + z^{2}) ds = 6V$$

- If $r \times dr = 0$, then show that $\hat{r} = constant$. (c)
- (a) 4.

F(x, y) =
$$(x^3 - y^3)/x^2 + y^2$$
, $(x, y) \neq (0, 0)$
0 $(x, y) = (0, 0)$

Then show that (x, y) is continuous but not differentiable at (0, 0)

www.davvonline.com

www.davvOnline.com

www.davvonline.com

(b) If $u = \sin^{-1} \frac{(x^2 + y^2)}{(x + y)}$ then show that

$$x \partial u \partial x + y \partial u \partial y = tanu$$

- (c) State and prove Mean value Theorem for function of two variables.
- 5. (a) Discuss the Maxima and Minima of the Function

$$ax^3y^2 - x4y^2 - x^3y^3$$

(b) Test the convergence of the series

(c) Find the Maxima and Minima of $u = x^2 + y^2 + z^2$ where

$$ax^2 + by^2 + cz^2 = 1$$