September 2011

Bachelor of Computer Application (BCA) Examination II Semester

Mathematics - II

Time: 3 Hours]

[Max. Marks: 40

Note: All questions are compulsory and carry equal marks. Solve any two parts from each question.

- 1. (a) Trace the curve $a^2y^2 = x^3(2a x)$.
 - (b) Test the convergence of $\int_0^1 \frac{dx}{x^{1/2}(1-x)^{1/3}}$.
 - (c) Define improper integral and explain kinds of improper integral.
- 2. (a) Prove that B(m, n) = $\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$, m, n > 0.
 - (b) Prove that $\Gamma(n) \Gamma(1 n) = \frac{\pi}{\sin n\pi}$, 0 < n < 1.
 - (c) Find the length of spiral $r = e^{d\theta}$ from the pole to the point (r, θ)
- 3. (a) Evaluate $\int_{1}^{e} \int_{0}^{\log} \int_{1}^{e^{x}} \log x \, dy \, dx \, dz$
 - (b) Show that $\iint_S (axi + byj + czk)$. $n dS = \frac{4}{3}\pi (a + b + c)$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$.
 - (c) Evaluate $\iint_{S} \frac{\vec{r}}{r^2} \cdot \vec{n} dS$.
- 4. (a) State and prove Euler's theorem on homogenous functions.
 - (b) If $u = e^{xyz}$, then prove that:

$$\frac{\partial^3 u}{\partial x \, \partial y \, \partial z} = (1 + 3xyz + x^2y^2z^2) e^{xyz}.$$

- (c) Expand $f(x,y) = x^2 + xy y^2$ by Taylor's theorem in the power of (x 1) and (y + 2).
- 5. (a) Discuss the maxima and minima of $u = ax^3y^2 x^4y^2 x^3y^3$.
 - (b) Find the maxima and minima of $u = x^2 + y^2 + z^2$ subject to the conditions $ax^2 + by^2 + cz^2 = 1$ and lx + my + nz = 0.
 - (c) Show that the following series is convergent:

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} + \dots$$

* * *

www.davvOnline.com

www.davvonline.com