May 2003

Bachelor of Computer Application (BCA) Examination

VI Semester

Computer Oriented Numerical Methods

Time: 3 Hours]

[Max. Marks: 50

www.davvonline.com

www.davvonline.com

Note: Attempt all questions.

1. Use a computer program and find the roots of f(x) = 0 accurate to 5 $x \cdot 10^{-6}$ using the bisecton method (write) a computer program only to solve this problem).

OR

Let
$$f(x) = x^3 - 3x - 2$$

Using Newton Raphson formula and starting with x = 2.1, compute x_1, x_2, x_3 .

- (a) Explain ill conditioned equations with example. How does one get refinement of solutions.
 - (b) Write a computer pogram to solve following equations by back substitution process (a part of Gauss Elimination method):

$$2x_1 + 4x_2 - 6x_3 = -4$$

 $x_1 + 5x_2 + 3x_3 = 10$
 $x_1 + 3x_2 + 2x_3 = 5$

OR

Use the none linear least square method and determine the exponential fit $y = Ce^{AX}$ for the five data points (0, 1.5), (1, 2.5) (3, 5.0) and (4, 7.5).

- (a) Let f (x) = 8x/2^x
 use quadratic Lagrange interpolation based on the nodes x₀ = 0, x₁ = 1 and x₂ = 2 to approximate f (1. 5).
 - (b) Write a computer program to solve above problem.

OR

(a) Let $f(x) = x^3 - 4x$. Construct the divided difference table based on the nodes $x_0 = 1$, $x_1 = 2$, ... $x_5 = 6$ and find the Newton Polynomial based on x_0 , x_1 , x_2 , x_3 .

www.davvonline.com

www.davvonline.com

- (b) Write a computer program to construct the divided difference table.
- (a) Solve following integral taking step size 0.5 and use composite Trapezoidal rule:

$$\int_0^2 x e^{-x} dx.$$

(b) Write a computer program to solve above problem.

OR

Obtain Differentiation formula using Newton's forward interpolation formula.

Let $f(x) = \cos(x)$, using above differentiaton formula calculate approximation for f'(0.8) wth step size = 0.1.

5. Find the solution to:

$$\frac{dy}{dt} = y^2 - t^2$$
, y(1) = 0, at t = 2

by the modified Euler metod using step size = 0.1.

Use Runge Kutta Method to solve for y. (0.1) from:

$$\frac{dy}{dx} = x + y + xy, y(0) = 1 \text{ with step size} = 0.1.$$