www.davvonline.com

Bachelor of Computer Application (BCA) Examination

VI Semester

Computer Oriented Numerical Methods

Time : 3 Hours]

[Max. Marks: 50

Note: Solve any two from each question.

- (a) What do you mean by convergence of solution? Prove that order of convergene of secant method is 1.62.
 - (b) Find cube root of 12 upto four places of decimal.
 - (c) Find real root of equation x log₁₀ x 1.2 = 0 by False Position method.
- (a) Write an algorithm to find roots of system of equations by Gauss Elimination method.
 - (b) What do you mean by Refinement of solution? Also explain the methods of curve fitting.
 - (c) Solve the following system of equation by Gauss-Jordan's method:

$$x + 2y + z = 8$$

 $2x + 3y + 4z = 20$
 $4x + 3y + 2z = 16$

3. (a) What do you man by forward, backward and divided difference oprator?

Prove that : (i)
$$E\nabla = \nabla E$$

(ii)
$$(1 + \Delta) (1 - \nabla) = 1$$
.

(b) The population of a country in the decennial census were as under. Estimate the population for the year 1925:

Year x

www.davvonline.com

www.davvonline.com

: 1891 1901 1911 1921 1931

Population y (in thousands)

46 66 81 93 101

(c) The following values of the function f (x) for values of x are given

$$f(1) = 4$$
, $f(2) = 5$, $f(7)$, $f(8) = 4$.

Find the value of f (6).

 (a) Write a program in C language to solve the integration by Trapezoidal rule.

www.davvonline.com

www.davvonline.com

(b) Find first and second order derivatives of the function tabulated below at x = 1.1:

x : 1.0 1.2 1.4 1.6 1.8 2.0 f(x): 0 0.1280 0.5440 1.296 2.432 4.00

- (c) Evaluate $\int_0^4 e^x dx$ by Simpson's 1/3rd rule. Given that $e^1 = 2.72$, $e^2 = 7.39$, $e^3 = 20.09$, $e^4 = 54.60$. Compare it with actual value.
- 5. (a) Use Picard's method to approximate y when x = 0.2 given that y = 1, when x = 0, $\frac{dy}{dx} = x y$.
 - (b) Given that $\frac{dy}{dx} = \frac{y-x}{y+x}$ with the initial condition y = 1, x = 0. Find y at x = 0.1 by Eulers method.
 - (c) Using Runga-Kutta 4th order method, solve the differential equation $\frac{dy}{dx} = xy$ for x = 1.6 in steps of n = 0.2 with initial condition y(1) = 2.

* * *