www.davvonline.com

www.davvonline.com

June-July 2007

Bachelor of Computer Application (BCA) Examination VI Semester

Computer Oriented Numerical Methods

Time: 3 Hours]

[Max. Marks: 40

Note: Solve any two parts from each question. All questions carry equal marks.

- (a) Derive the formula for Newton-Raphson Method giving Geometrical Interpretation.
 - (b) Explain Secant Method, find the root of the equation $x^2 4x 10 = 0$ with, the initial estimates of $x_1 = 4$ and $x_2 = 2$
 - (c) Write a program for Bisection Method.
- 2. (a) What is III Conditioned Equation? How they are refined?
 - (b) Solve the following set of equation using Gauss-Seidel iteration method:

$$2x_1+x_2 + x_3 = 5$$

 $3x_1 + 5x_2 + 2x_3 = 15$
 $2x_1 + x_2 + 4x_3 = 8$

- (c) Write a program for Gauss Elimination Method.
- 3. (a) Define the following operators:
 - (i) Forward Operator
 - (ii) Backward Operator
 - (iii) Divided Difference Operator
 - (iv) Central Operator
 - (v) Averaging Operator.
 - (b) From the following data evaluate f(9) using Newton's divided difference formula:

x: 5 7 11 13 17 f(x): 150 392 1452 2366 5202

- (c) Write a program for Lagranges Interpretation.
- 4. (a) Derive the formula for Newtons forward difference interpolation.
 - (b) Evaluate the following integral by using Simpson's one-third rule with six equal intervals:

$$\int_{0}^{1.2} e^{-x^2} dx$$
.

www.davvonline.com

www.davvonline.com

www.davvonline.com

- (c) Write a program for Simpson's Three- Eight Rule.
- 5. (a) Solve the equation:

$$\frac{dy}{dx} = -2xy^2$$

where y(0) = 1 with h = 0.2 on the interval [0, 1] by Eulers method.

- (b) Using Taylor's series method solve: $y' = x^2y - I$, y(O) = 1 at x = 0.1, 0.2, 0.3.
- (c) Write an algorithm for Runga Kutta fourth order method and

solve
$$\frac{dy}{dx} = x + y$$
, y (O) = 1 at x = 0.2.

