www.davvonline.com

www.davvonline.com

August 2011

Bachelor of Computer Application (BCA) Examination VI Semester

Computer Oriented Numerical Methods

Time: 3 Hours] [Max. Marks: 50

- Find cube root of 12 upto four places of decimal. 1.
 - (b) Write a C program for Bisection method.
 - Find real root of equation $x \log_{10} x 1.2 = 0$ using False Position Method.
- Write an algorithm for Pivotal Condensation. 2. (a)
 - Solve the following system of equations by Gauss-Jordan's Method:

$$x + 2y + z = 8$$

 $2x + 3y + 4z = 20$
 $4x + 3y + 2z = 16$

Determine the constants a and b by the method of Least Square such that $y = ae^{bx}$ fits the following data:

X

6

10

6

v = f(x)

4.077

11.084 30.128 81.897 222.62

- Write algorithm for Newton's forward interpolation formula. 3.
 - Define forward, backward and divided difference operator. Prove (b) that:

(i)
$$\mathsf{E} \nabla = \nabla \mathsf{E}$$
.

(ii)
$$(1 + \Delta) (1 - \nabla) = 1$$
.

- Prove that the sum of Lagrange's Coefficient is unity.
- Write a C program to solve integration by Trapezoidal Rule. 4. (a)
 - Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ using Simpson's One-Third Rule, where the interval of integration is subdivided into six equal parts.

www.davvonline.com

www.davvonline.com

(c) Define Cote's Numbers. Prove that:

$$C_k^n = C_{n-k}^n$$
 where $0 \le k \le n$.

- 5. (a) Using Runge-Kutta fourth order method, solve the differential equation $\frac{dy}{dx}$ for x = 1.6 in step of h = 0.2 with initial condition y(1) = 2.
 - (b) Write a C program for Taylor's Series Method.
 - (c) Use Piard's Method to approximate y when x = 0.2, given that y = 1, when x = 0 and $\frac{dy}{dx} = x y$.