www.davvonline.com

June 2013

Bachelor of Computer Application (BCA) Examination VI Semester

Computer Oriented Numerical Methods

Time: 3 Hours]

[Max. Marks : 50

Note: Solve any two parts from each question. All questions carry equal marks.

www.davvonline.com

တ် www.davvonline.com

- (a) Write a program for Newton-Raphson Method.
- (b) Using Secant Method find the roots of polynomial equation $x^2 x 1 = 0$.
- (c) Define order of convergence. Apply Graffes Root Squaring Method to solve the equation $x^3 8x^2 + 17x 10 = 0$.
- (a) Write an algorithm for Gauss Elimination with pivoting.
- (b) Solve the following set of equations using Gauss-Seidel Iteration Method:

$$2x + y + z = 5$$

 $3x + 5y + 2z = 15$
 $2x + y + 4z = 18$

(c) Find the curve of best fit of the type y - ae^{bx} to the following data by the method of Least Square:

Χ

1

5

7

9

12

Υ

10

15

12

15 21

- (a) Prove that the sum of Lagrange's Coefficients is unity.
- (b) Evaluate the following:

(i)
$$\Delta$$
 (e^{ax} log bx)

(ii)
$$\left(\frac{\Delta^2}{E}\right) x^2$$
.

- (c) Write an algorithm for Newton's Forward Interpolation Formula.
- 4. (a) Write a program for Simpson's Three-Eight Rule.
 - (b) Define Cote's Number. Prove that:

$$C_{k}^{n} = C_{n-k}^{n}$$
 where $0 \le k \le n$.

www.davvonline.com

www.davvonline.com

(c) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ from following data at x = 1.5:

X : 1 2 3 4 5 Y : 1 4 9 16 25

5. (a) Solve the equation by Euler's Method:

$$\frac{dy}{dx} = -2xy^2$$

where y(0) = 1 with h = 0.2 on the interval [0, 1].

- (b) Write an algorithm for Runga Kutta Fourth Order Method.
- (c) Using Taylor's Series Method solve : $y' = x^2y 1, y(0) = 1 \text{ at } x = 0.1, 0.2, 0.3.$

* * *