June 2016

Bachelor of Computer Application (BCA) Examination

VI Semester

Computer Oriented Numerical Methods

Time 3 Hours]

[Max. Marks 50

www.davvonline.com

Note: Solve any two parts from each question. All questions carry equal marks.

- (a) How a floating point number is stored in the memory of a computer? Discuss with examples the procedures of four basic arithmetic operations using normalized floating point numbers.
 - (b) What do you mean by roots of an equation? Discuss the successive bisection method of evaluating roots of a non-linear equation in one variable.
 - (c) By using Newton-Raphson's method find the root of $x^4 x 10 = \frac{8}{5}$ 0, which is near to x = 2, correct to three places of decimal?
- (a) Discuss the Gauss Seidel method for the solution of simultaneous equations. What is Pivoting? Explain pivoting use in Gauss Seidel method. Give a comparison of direct iterative methods.
 - (b) Solve the following system by Gauss-Elimination methods, correct to three decimal places, $3x_1 + x_2 x_3 = 3$; $2x_1 8x_2 + x_3 = -5$; $x_1 2x_2 + 9x_3 = 8$.
 - (c) Find the curve of best the type $y = ae^{bx}$, to the following data by the method of Least Square:

x : 1 5 7 9 12 y : 10 15 12 15 21

3. (a) Find the value of f (0.35), using Lagrange's Interpolation formula:

x : 0.0 0.1 0.2 0.3 0.4 f(x) : 1.000 1.1052 1.2214 1.3499 1.4918

- (b) Write an algorithm For Newton's Backward Interpolation formula.
- (c) Prove that the sum of Lagrange's Coefficient is unity.
- 4. (a) Write a 'C' program for Simpson's Three-Eight rule.
 - (b) Evaluate $y = f(x) = x/(1 x^2)$ and a = 0, b = 6 by using Trapezoidal rule.
 - (c) Define Cote's Number with suitable example.

www.davvonline.com

www.davvonline.com

- (a) Write a 'C' program to find the solution of ordinary differential equations using Euler's method.
 - (b) Given dy/dx = {(3x) + (y/2)} with y(1) = 1. Find the solution of differential equation using Runge-Kutta second order methods, correct to three decimal position in the interval [1, 1.4], using step size h - 0.1.
 - (c) Using Taylor's series method solve:

$$y' = x^2y - 1$$
, $y(0) = 1$ at $x = 0.1$, 0.2, 0.3.

